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Final Report on "Scintillation control for adaptive 

optical sensors", Contract Number F49620-98-1-0295 

Michael C. Roggemann * 

Abstract 

Michigan Technological University (MTU), under contract to the Air Force Office of Scientific Re- 

search (AFOSR), has been investigating strategies for overcoming the effects of scintillation on adaptive 

optical imaging and laser beam projection systems which must operate in the presence of extended path 

turbulence. The approach originally proposed under this contract involved using two deformable mirrors 

to fully conjugate the received or transmitted beam. Our investigations into this concept have shown 

that implementation details associated with the use of real adaptive optical hardware will likely limit the 

effectiveness of the two deformable mirror technique. As a consequence, an alternative approach using 

one deformable mirror was developed, and its performance was investigated. This technique exploits the 

fact that, under strong scintillation conditions, information about the phase of the beacon field is incor- 

porated in the intensity of the beacon field. Hence, deformable mirror commands which are consistent 

with all of the intensity measurements available to an adaptive optical system are processed using a new 

nonlinear optimization-based algorithm. Our studies of the performance of this technique have shown 

that under conditions of saturated scintillation this new approach significantly outperforms the standard 

centroid-based processing of the Hartmann sensor measurements. An experiment conducted at MTU has 

demonstrated the ability to predict a laser intensity pattern in a distant target plane using Hartmann 

sensor measurements of the field reflected from a deformable mirror. One accepted journal article, and 
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one submitted journal article have resulted from this work, along with three conference papers. In ad- 

dition, this work forms the basis of a program which is now being conducted with the Airborne Laser 

Technology Division. 

1    Introduction. 

Atmospheric turbulence corrupts propagating optical wave fronts. If the turbulence lies outside the near 

field region of the aperture both the phase and the amplitude of the wave are corrupted at the receiver 

[1, 2]. The problem of correcting for the phase effects of atmospheric turbulence has received a great deal of 

attention in the literature [3, 4]. Adaptive optical systems which can effectively conjugate the phase of a wave 

front corrupted by near field turbulence, where turbulence-induced phase effects dominate the atmospheric 

degradation of performance, are becoming mature [5]. As adaptive optical systems continue to develop, 

interest is increasing in the problem area of projecting laser beams and imaging over longer, and possibly 

horizontal paths, where both phase and amplitude effects will corrupt the propagating wave front at the 

receiver or target. Amplitude errors in a wave front which has passed through a turbulent region are referred 

to as scintillation. Scintillation arises in optical propagation when turbulence-induced phase aberrations 

in one region are converted by propagation over long distances to amplitude fluctuations at the receiver 

or target for the system [2]. Examples of systems whose performance is degraded by scintillation include 

laser weapon systems and laser communication systems. In the case of laser weapons, turbulence-induced 

scintillation causes amplitude fluctuations at the target which reduce the energy density that can be applied 

at the desired point. Turbulence induced scintillation degrades the performance of laser communications 

systems by causing signal dropouts which reduce the signal-to-noise ratio [1]. 

The amplitude of an optical wave front can be directly controlled using absorbing elements such as a liquid 

crystal TV [6]. Unfortunately, absorbing elements are inefficient in their use of light, and are inappropriate 

for high power laser applications because the power densities involved would destroy any absorbing element. 

Hence, it is highly desirable to accomplish amplitude control using entirely reflective elements if possible. 



Reflective deformable mirrors such as those used in adaptive optics are candidate devices for amplitude 

control. 

An approach to correcting scintillation effects for laser beam projection and imaging systems using two 

deformable mirrors was published in Ref. [7], which is an extension of the basic concept published by Kanev 

and Lukin in Refs. [8, 9, 10]. A uniform amplitude beam is assumed to fall on the first deformable mirror. 

The location of the second deformable mirror is chosen to lie in the far field of the first deformable mirror, 

and the propagation to the far field is accomplished by use of a Fourier transforming mirror. The problem of 

determining the phase adjustment to apply to the first deformable mirror is not linear, and cannot be solved 

in closed form [11, 12]. However, because the fields falling on the first and second deformable mirrors form 

a Fourier transform pair, the phase of the first deformable mirror can be obtained using an approach based 

on the Fienup phase retrieval algorithm [13]. The second deformable mirror is used to correct the phase of 

the beam to achieve field conjugation in the beam transmitted from the aperture. This mirror configuration 

choice enables the implementation of the phase retrieval based algorithm for determining the phase of the 

first deformable mirror which is described and evaluated here. Because the phase retrieval algorithm returns 

the principal value phase for the first deformable mirror, phase unwrapping is implemented using a branch 

point reconstruction algorithm [14]. 

The results published in Ref. [7] indicate that in principle the two deformable mirror scintillation com- 

pensation technique can, on average, improve the far field diffraction pattern of a beam passed through 

extended path turbulence, where the goal is to maximize the energy deposited in a small region in beacon 

plane. However, the study presented in Ref. [7] assumed pointwise control of the deformable mirrors. This 

assumption is an idealization equivalent to assuming that the deformable mirrors have infinite degrees of 

freedom. During the course of this project we explored the effects of a realistic segmented deformable mirror 

model. A simulation of propagation through an extended, horizonatal, constant C\ atmospheric path was 

used to evaluate the effectiveness of this technique. Two compensation techniques were implemented to cor- 

rect an outgoing laser beam: (1) conventional phase-only correction based on branch point reconstruction of 

the beacon field; and (2) field conjugation implemented by the two deformable mirror technique implemented 



with segmented deformable mirrors. Since the focus of this study is on the effects of realistic deformable mir- 

rors, an idealized wave front sensor is assumed which can measure the amplitude of the incident beacon field 

and local phase differences on the spatial sampling scale of the simulation. The results of our study indicate 

that a single deformable mirror controlled with a branch point reconstruction-based approach provides equal 

or superior performance compared to the two deformable mirror technique. 

As a consequence of this finding we began investigating theoretical avenues to process all of the intensity 

measurements available in an adaptive optical system to obtain the deformable mirror commands. To 

understand the motivation for this algorithm, a short review of the basic theory of complex-valued variables 

is presented, and the implications adaptive optical systems operating in the presence of turbulence are 

discussed. Let the turbulence-corrupted complex optical field in some plane be represented by U(x.), and 

adopt the standard definition of the principal value phase ^(x) as 

where 5R{£/(x)} and Q{t/(x)} represent the real and imaginary parts of the complex field, respectively, and 

x represents a spatial location in the plane of interest. Inspection of Eq. (1) shows that the principal value 

phase is defined only on the interval (—7r,7r). Hence, in an optical field which has propagated through a 

turbulent region of the atmosphere a continuous principal value phase function does not in general exist 

[15, 16]. There are two sources of discontinuities in the principal value phase: (1) so-called "phase wraps", 

which arise from the phasor representing U(x) moving from the second to the third quadrant of the complex 

plane, or conversely; and (2) so-called "branch points", which arise from the presence of zeros in the complex 

field. When plotted, the principal value phase of complex fields which have no branch points may appear 

discontinuous due to phase wraps, but in fact a continuous phase map with values that lie outside the range 

of (—7r,7r) can be constructed by "unwrapping" the principal value phase [14]. A number of techniques exist 

to accomplish this unwrapping, or reconstruction process. These techniques are based on computing the 

discrete gradient of the principal value phase, which corresponds to computing finite phase differences on a 



sampled grid [3,16], and the applying either recursive reconstruction, such as used in reconstructing the phase 

of the Fourier transform of the image in the Knox-Thompson technique of speckle imaging method [3], least 

squares, minimum variance, or maximum likelihood techniques for fitting smooth elementary functions to 

the phase differences [3], or by computing the discrete Laplacian of the principal value phase and formulating 

a solution based on a discrete Poisson's equation solution [14]. 

The least squares reconstruction paradigm is the most widely used in adaptive optical systems [3, 16]. 

However, implicit in the derivation of the least squares reconstructor is the assumption that there exists a 

continuous phase. As discussed in Refs. [15],[14], and [16], when there are branch points in the complex field, 

a continuous phase does not exist. The presence of branch points is necessarily associated with amplitude 

fluctuations, or scintillation, in the optical field. Scintillation strength is typically characterized by the 

variance of the logarithm of the ratio of the actual amplitude at a point to the amplitude of the field 

resulting from free space propagation from the same source, denoted by CT£. Theoretical expressions for <r£ 

have been developed using a weak fluctuation theory [17, 18], and theoretically obtained values for cr£ are 

often referred to as the "Rytov variance", which we will denote by PZR to distinguish the theoretical value 

for the variance of the log amplitude fluctuations from the experimentally observed value. Under conditions 

where scintillation is negligible a^R is small, typically on the order of a^ R < 0.05, and <r£ and a2
x R are 

typically in close agreement. As the path length L or the strength of the turbulence C\ increases, a1 R 

increases steadily. However, it has been observed experimentally [17] and in simulations [19, 20] that while 

a2 R increases steadily as C\ or L increase, the observed fluctuations in the log amplitude c£ saturate at 

a level of CT£ SS 0.3 [17]. Under conditions of CT£ R > 0.05 branch points generally appear in the turbulence 

corrupted optical field. As interest grows in using adaptive optical systems to image and propagate laser 

beams over long paths or through strong turbulence, understanding the opportunities for improving adaptive 

optical system performance by use of appropriate wave front reconstructors is increasingly important. 

A new class of wave front reconstruction algorithms have been developed in the synthetic aperture radar 

signal processing community which can sense the presence of branch points in high resolution and high 

signal-to-noise ratio phase difference data, and provide reconstructed phase maps which account for the 



branch points and associated branch cuts [14]. One branch point reconstruction technique, referred to as 

Goldstein's algorithm, was implemented and used to study the value of branch point reconstruction in laser 

beam projection systems. Goldstein's algorithm uses a two step process to reconstruct a wave front: (1) it 

first locates branch points in the wave front; and (2) it implements a path-dependent phase reconstruction 

similar to conventional recursive reconstructors [3], with the distinction that phase discontinuities arising 

from branch points are accounted for in the reconstruction. When branch points are present in the wave 

front, Goldstein's algorithm computes a discontinuous phase function which when "rewrapped" exactly 

matches the input wrapped phase in the absence of noise. Unfortunately, a significant practical barrier to 

implementing Goldstein's algorithm is the need to explicitly find the branch points in realistic wave front 

sensor data which is spatially averaged and corrupted with measurement noise. These problems may prevent 

implementing branch point reconstructors with real wave front sensor data, and provide motivation for the 

study of a nonlinear approach for obtaining deformable mirror commands. 

In this report we describe an algorithm for wave front reconstruction and deformable mirror control 

which attempts to provide performance which is nearly equivalent to branch point reconstructors working 

with pointwise phase difference data, but does not require that the branch points be located. Rather, the 

algorithm is based on the premise that information about the phase of the beacon field is encoded in the 

intensity of the beacon field, the wave front sensor intensity image, and a conventional image formed with 

light from the beacon. The algorithm developed here is an extension of the algorithm presented in Ref. [21], 

where it was shown that Hartmann sensor and conventional images could be jointly processed to increase 

the dynamic range of a Hartmann sensor. An optimal set of weights for wave front reconstruction basis 

functions or deformable mirror influence functions can be obtained by finding the set of weights which is 

maximally consistent with a measured Hartmann sensor image and a measured conventional image when 

the pupil intensity is available to the algorithm. Three measurements are required for this algorithm: (1) 

the Hartmann sensor image; (2) a conventional image formed with light from the beacon field; and (3) a 

beacon intensity map. The phase of the incident field is estimated by a linear combination of influence 

functions in a nonlinear optimization-based algorithm. For comparison purposes we have also implemented 



idealized least squares and a branch point reconstructor based on Goldstein's algorithm, both of which use 

the output of an idealized pointwise phase difference sensor, and a conventional least squares reconstructor 

based on centroid processing of Hartmann sensor output. We have found that the algorithm developed here 

provides significantly improved performance over a conventional least squares Hartmann sensor processing 

algorithm under conditions of strong and saturated scintillation, and with performance almost equivalent to 

Goldstein's algorithm in a laser beam projection paradigm with finite degree-of-freedom, phase-only adaptive 

optics implemented in the transmitter. One benefit of the algorithm presented here is that the need for point- 

by-point phase differences required by Goldstein's algorithm is eliminated, making this algorithm attractive 

for systems which must operate in the presence of scintillation. 

The remainder of this report is organized as follows. The theoretical basis and supporting analysis are 

presented in Section 2. The simulation used to evaluate performance is discussed in Section 3. Theoretical 

and simulation results are presented in Section 4, and experimental results are presented in Section 5. 

Conclusions are drawn in Section 6. 

2    Technical analysis. 

In this section the theoretical analysis of the scintillation compensation concept is presented. This section 

begins with the basic phase-retrieval based approach to the laser beam projection problem which assumes 

the ability to control an optical wave front with a very high degree of freedom deformable mirror. Since 

deformable mirrors with such a large number of degrees of freedom are currently an idealization, scintillation 

control with modal mirrors was then investigated. Use of modal mirrors requires a significantly different 

approach to determining the deformable mirror commands since such mirrors cannot be controlled on a 

"point-wise" basis as was assumed for the early work. The approach for determining the modal mirror 

commands is based on nonlinear optimization. This section concludes with the development of the nonlinear 

optimization theory for using modal mirrors. The scintillation control studies implemented for imaging follow 

directly from the laser beam projection work, and as a consequence, a less detailed theoretical treatment is 



presented for the imaging work. 

The functional block diagram for the scintillation correction system for laser beam projection is shown in 

Fig. 1. It is assumed that a beacon wave front is available from the object which carries the amplitude and 

phase corruption induced by propagation from the object to the telescope, and hence carries information 

about the beacon field. The mechanism by which this beacon is provided is not treated here, though we note 

that obtaining a suitable beacon is a serious issue affecting the practical implementation of this technique. 

The intensity and phase of the incident beacon wave front is measured with a suitable device, such as a 

Hartmann sensor, which is sensitive to both the local gradient of the phase and the intensity of the incident 

wave front [3]. The wave front sensor outputs are processed to compute the amplitude and the phase 

of the field in the telescope aperture. Phase retrieval routines process the beacon amplitude and phase 

measurements to determine the phase deformation to apply to the deformable mirrors DM\ and DM2 to 

conjugate the field due to the beacon. It is assumed that a collimated laser beam is incident on DM\. The 

deformable mirror computer contains the phase retrieval algorithm which computes the phase distortion to 

apply to DM\. The goal is to apply a phase distortion to DM\ which provides a close match to the desired 

amplitude distribution when the light falls on DMi. DM2 lies in the Fraunhofer diffraction region of DM\ 

due to use of the Fourier transforming mirror shown in Fig. 1, and DM2 is assumed to be optically conjugate 

to the pupil plane of the beam projection system. The purpose of DM2 is to correct the phase distribution 

of the outgoing beam so that the field is approximately conjugated to the incident field from the beacon as 

it leaves the aperture. Two approaches for controlling DM\ are now discussed: pointwise control of DM\, 

and modal control of DM\. 

2.1    Pointwise control of DMi. 

Let the complex-valued wave front incident on the aperture from the beacon Ub(xf) be represented by 

Üb (xf) = Ab (xf) exp {jipb (xf)}, (2) 
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Figure 1: Block diagram for scintillation correction system. 

where Sf is a position vector in the telescope pupil, At(xf) is the amplitude of the beacon field, iptföf) is 

the phase of the beacon field, and the tilde is used to indicate a complex-valued function. Let the amplitude 

and phase of the beam transmitted by the aperture Ut(xf) be represented by 

Üt(xf) = B(xf) exp {jipt(xf)} , (3) 

where B{xf) represents the amplitude of the field reflected from DM2, and tpt(xf) represents the phase of 

the field reflected from DM2.  In the laser beam projection context, optical field conjugation means that 



B(xf) and tpt(xf) are adjusted so that [22] 

B(xf) oc Ab(xf), (4) 

and 

M$f) = -M^f), (5) 

where the notation z\ oc zi is used to represent the "proportional to" relational concept. Note that in writing 

Eq. (4) we have assumed that the amplitude of B{xj) is small enough so that there are no nonlinear effects 

such as blooming [8, 23] 

The amplitude of the field illuminating DM2 is established by applying a phase deformation to DM\, and 

projecting the resulting field into the Fraunhofer diffraction region using the Fourier transforming mirror 

[24]. The field falling on DM\ is assumed to be a well-collimated laser beam of amplitude A. The field 

leaving DM\ Ui(x) has amplitude A and a phase profile imparted by DM\ 

Üi(f) = i4exp{M(Ä)}. (6) 

Letting the field illuminating DM2 be represented by Üiißi), we obtain 

Ü2(xf) = FT [Üi(gj\ = B{Sf) exp {j<P(xf)} , (7) 

where x is a spatial coordinate in the plane of DMi, FT [■] represents the Fourier transformation operator, 

Xf — fXfi where / is the independent spatial frequency variable which arises from the Fourier transform 

operation of Eq. (7) and fi is the focal length of the Fourier transforming mirror, ipi (x) represents the phase 

distortion applied to DM\, and (j>(xf) represents the phase of the wave front falling on DM^. The purpose 

of DM2 is to apply a phase distortion to XJii&f) such that the complex transmitted field has phase equal to 

-ipb(x). 

10 



The relationship between the phase ipi{x) applied to DM\ and the amplitude B(xf) which is incident 

on DM2 is not linear, and no squared error metric can be defined which would yield a term linear in *l>i(x) 

when differentiated with respect to tpi{x). Hence, an iterative approach to determining the optimal tp\{x) 

is adopted here which is based on the phase retrieval algorithm [12, 13]. A functional block diagram of the 

algorithm used here is shown in Fig. 2. 

The starting point for the algorithm is shown in the upper left-hand corner of Fig. 2. A plane wave of 

amplitude A, which physically corresponds to the amplitude of a well-collimated laser beam falling on DMi, 

is associated with a random guess for ipi(x), the phase of DM\. The field leaving DMi, Aexp{jipi(x)}, 

is then projected into its Fraunhofer diffraction region by use of a fast Fourier transform (FFT), which 

physically corresponds to the function performed by the Fourier transforming mirror shown in Fig. 1. The 

outcome of this step is represented by B{xj) exp{j<j>(xj)}, and physically corresponds to the field which 

would fall on DM2 due to the particular ipi(x). The Fourier domain constraint that the field falling on DM2 

should satisfy Eq. (4) is enforced by substituting the desired field amplitude B'(xf) for B(Sf), where B'(xf) 

is given by 

(£'(£/))norm = (M2f))norm • (8) 

The subscript "norm" in Eq. (8) is used to indicate that the terms on both sides of the equality symbol have 

been normalized to have unit energy. The quantity B'(xf) exp{jcf>(xf)} is then projected back into the plane 

of DM\ by use of an inverse FFT to obtain A'(x)exp{jipi(x)}, where the ip\[x) term is taken to be the 

"next" step in determining the ultimate figure of DM\. The uniform field amplitude A is then substituted 

for A'(x), returning the algorithm to the upper left-hand corner of Fig. 2. This process is repeated until the 

stopping criterion is satisfied. 

The stopping criterion used here is based on the convergence of a measure of the squared error a2 

between the normalized amplitude of the field falling on DM2, (B(xf))noim, and the normalized beacon 

11 
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field amplitude (>!&(£/))norm given by 

a2 = J [|(A6(5»)norm| - |(5(^/))norm|]2d:?/- (9) 

Letting a(k) represent the value of a obtained in the Ar   iteration, the stopping criterion is that the fctJl 

ipi (x) is taken as the final figure of DM\ when the condition 

\a(k) - a(k - 1)| 
a(k - 1) 

<10" (10) 

is satisfied. We note that this stopping criterion does not guarantee that a global minimum error has been 

found. Rather, this stopping criterion indicates that ^i(^) has stopped changing from iteration to iteration. 

12 



2.2    Modal control of DMi and DM2. 

The derivation presented in Section 2.1 assumes that the phase of a wave front can be controlled on a pointwise 

basis. This level of control is an idealization which cannot now be realized in practice. The phase retrieval 

algorithm provides the principal value, or "wrapped" phase ipi (x) due to the use of Fourier transforms in 

the calculation. The wrapped phase contains discontinuities due to the complex phasor representation of 

exp{ipi(x)} moving from the second to the third quadrant of the complex plane, and because the full field 

propagated backwards from the DMi plane to the DM\ plane after the constraints are imposed in general 

contains branch points. Because of these discontinuities, fitting a deformable mirror directly to the ipi(x) 

which is output by the phase retrieval algorithm will have large fitting errors. To reduce the fitting error 

we have implemented a branch point reconstruction algorithm known as Goldstein's algorithm [14] which 

we use to "unwrap" tpi(x). We denote the unwrapped phase by \j)Y(x). The unwrapped phase ipY(x) w*n 

still contain discontinuities, but we have found that effects due to fitting error are much smaller when phase 

unwrapping is implemented. 

The segmented mirror was specified by the center-to-center spacing of the square actuators, and it was 

assumed that there was no dead space between actuators. In the simulation there were never fewer than 

3x3 pixels used to model individual actuators. The positions of the individual actuators was determined 

by assigning the actuator to have the same value as tpi(x) at the location of the center location of the 

actuator. Since the segmented mirror actuators do not spatially overlap the individual influence functions 

are orthogonal, and hence, no additional processing is required to determine the figure for DM\. 

The field falling on DM\ was modeled as being a uniform amplitude plane wave, such as might be 

obtained from a well-collimated laser beam with amplitude A. The field falling on DMi, denoted in by 

Üi(xf), was calculated using Eq. (7), using an FFT to accomplish the Fourier transform operation. The 

phase of DM2, denoted by ip2(xf), must compensate both for the phase of the field arriving from DM\, 

represented by <j){x"f) in Eq. (7), and for the phase of the atmosphere tpbix"}), so ^at in principle 

fo(xf) + </>(x*f) = -i)b{x"f). (11) 

13 



In practice, we have found that the field falling on DM2 also contains branch points, and hence it is necessary 

to unwrap the phase which we wish to apply to DM2. The unwrapped phase for DM2 ^(^f) was found 

by providing the wrapped phase given by arg{exp{-^(a5/)}exp{-^fc(x})}} to Goldstein's algorithm. A 

segmented deformable mirror was also fit to ip^i^f) to obtain the actual figure for DM2 V*2 (£"/)■ The 

outging field was calculated by computing 

Ütißt) = Ü2(xf) exp {M*t)} • (12) 

2.3    A new algorithm for controlling a single deformable mirror. 

We consider wave front reconstruction in the context of a horizontal path adaptive optical laser beam 

projection system. The basic geometry is shown in Fig. 3. We have modeled propagation through a three 

dimensional volume of turbulence by using a layered model for the atmosphere [3,19]. A point source beacon 

illuminates the turbulence volume, and the turbulence-corrupted beacon field is intercepted by the aperture. 

An ideal lens is placed in the aperture of the system and has focal length equal to the path length so that an 

outgoing plane wave would be focused at the beacon location in the absence of turbulence. We shall refer to 

the complex field emanating from the beacon that is intercepted by the telescope pupil as the beacon field, 

and denote it by UB(X-P) = AB(XP) exp{JipB(xp)}, with intensity Jß(xp) = |J7ß(xp)| , where xP is a two 

dimensional coordinate in the pupil plane. A single deformable mirror and a Hartmann wave front sensor are 

placed optically conjugate to the receiver aperture. In addition to the Hartmann sensor measurement, it is 

assumed that the intensity of the beacon field in the receiver plane can be measured, and that a conventional 

image is also formed with the beacon field. The outgoing beam initially has uniform intensity, and it is focused 

so that in the absence of turbulence an Airy disk would be present at the beacon location. The phase of the 

outgoing beam is modified using a simulated deformable mirror whose figure is adjusted by four techniques 

to perform compensation on the outgoing beam: (1) a conventional Hartmann sensor centroid-based least 

squares reconstruction algorithm [3]; (2) a branch point reconstructor known as Goldstein's algorithm [14] 

which requires as input idealized (and in practice unobtainable) pointwise phase differences; (3) a least 

14 
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Figure 3: Geometry for laser beam projection system. 

squares reconstructor which also requires as input idealized (and in practice unobtainable) pointwise phase 

differences; and (4) the new nonlinear optimization-based algorithm described here. It should be noted that 

the branch point and idealized least squares reconstructions would not be obtainable in practice, but are 

computed to serve as comparative measures of performance. For example, the performance of the idealized 

branch point reconstructor serves as an upper bound on the performance of the nonlinear optimization- 

based technique developed here, and the idealized least squares reconstructor serves as an upper bound 

on the performance of the Hartmann sensor-based least squares reconstruction. The compensated beam is 

propagated back through the turbulent volume to the beacon plane, where statistical quantities of interest 

are accumulated to evaluate the performance of the various compensation approaches. 

Since we are interested in studying the effects of scintillation on wave front sensing in extended path 

turbulence we have modeled a 100 km path using 10 equally spaced turbulent layers, with the first layer 10 

km from the beacon, and the final layer lying in the aperture. The ten layer model is justified in this case 

by the close match between the Rytov variance computed for spherical wave propagation through a region 

of constant C\ given by [17] 

*lR = 0.56fc7/6 £ dzCl{z) (£)5/6 {L - ,)«/«, (13) 
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and the Rytov variance calculated by assuming the turbulence lies in layers given by 

Player = 0.56*7'«ALC« £ (^) (L - nAL)^, (14) 
n=l   ^ ' 

where A/, = 10 km is the layer thickness.   For example, when C\ = 1 x 10~18 a^R = 0.158, while 

a2 .     r = 0.155. x.layer 

The phase of an arbitrary random screen is denoted by ipn(x), where x is a coordinate in the random 

screen plane, so that the field immediately after a random screen has the form 

UR(x) = UA(x) exp0^fi(x)}, (15) 

where UA(X) is the field incident on the random screen. For each screen the field UR(X) lies in the Fresnel 

region of the next screen or, in the case of the last screen, in the receive/transmit aperture [24]. An angular 

spectrum propagator was used to perform the near field propagations [7]. The beacon field is passed through 

a simulated lens which would be perfectly focused on the beacon in the absence of turbulence, and thus 

having complex transmittance given by 

■{-4<w>} f,(xp) = exp |-j—(|xH2)j (16) 

where the total path length L = 100 km, and xp is a two dimensional coordinate in the pupil plane. Phase 

only corrections of an outgoing, initially planar beam are calculated in the aperture plane, and the corrected 

beam is passed through the lens and propagated in reverse through the phase screens to the beacon plane. 

In the beacon plane the intensity distribution of the various correction schemes is calculated, and statistical 

quantities needed to compute the mean and the variance of the intensity distribution are accumulated. 

These intensity statistics form the basis for comparing the least squares and branch point correction schemes 

investigated here. 

We have implemented a principal phase difference-sensitive wave front sensor with resolution equal to the 
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sample spacing in the simulation to provide idealized wave front sensor input into the idealized branch point 

and least squares reconstructors. The wave front sensor measures principal value phase differences (or some 

quantity proportional to the principal value phase differences) on a sampled grid in xp-space denoted by 

the discrete integer coordinates (i,j), with 0 < i < M — 1 and 0 < j < N — 1. Horizontal phase differences 

Ax(i,j) and vertical phase differences Ay(i,j) are assumed to be known modulo 2n on a discrete grid with 

locations designated by (i,j). The phase differences are defined by [14] 

Ax(i,j) = arg[exp{j (tpB(i + l,j) - TpB{i,j))}}, (17) 

and 

A»(*,i) = arg[exp{j (^B(i,j + 1) - 1>B(i,j))}], (18) 

where arg[-] is an operator which takes the phase of a complex-valued quantity. As can be seen by Eqs. (17) 

and (18), the phase differences obtained in this fashion are the principal value phase differences which are 

the typical output of wave front sensors used in adaptive optical systems [16]. Branch points in the field 

C/ß(x) will rarely (if ever) fall directly on a sample point [16, 14], and hence, searching for a zero in the 

incident field is a poor strategy for locating branch points. Rather, the phase differences are summed around 

all possible 2x2 collections of samples using 

S(i,j) = -Ax(i,j) - A»(i + l,j) + A*(i,j + 1) + A»(*,i). (19) 

When S(i,i) = 0 no branch point is enclosed, and no phase discontinuity exists at (i,j). However, when 

S(i,j) = ±2n, a branch point is enclosed by the loop, and it is expected that a discontinuity in the 

reconstructed phase will originate at this point. The location and "polarity", or sign of the 2-ir term are 

noted and used in branch point reconstruction algorithms. The branch point reconstruction algorithm used 

in this paper is generally referred to as the Goldstein algorithm (though the seminal paper is by Goldstein, 

Zebker and Werner), which has been fully discussed elsewhere [14]. Here we confine ourselves to qualitatively 

17 



summarizing the algorithm and providing an example of its performance. Wrapped phase differences are 

input to Goldstein's algorithm. Branch points are located as described in the discussion of Eq. (19), and 

their polarity is noted. A heuristic approach based on the region growing concept of image processing [25] 

is used to connect the nearest pairs of positive and negative branch points. Branch cuts are constructed 

along the paths defined by pairs of positive and negative branch points. A phase reconstruction approach 

similar to the recursive algorithm is then implemented, but with the significant exception that no path is 

allowed to encircle a branch point or cross a branch cut. As a direct consequence, the reconstructed phase is 

discontinuous at the branch cuts. The unwrapped phase reconstructed with the branch point reconstructor 

is denoted by <f)-Qp(i,j). The Goldstein algorithm is known to provide accurate results except in regions 

which are completely enclosed by branch cuts. However, in our experience, the Goldstein algorithm has not 

failed when applied to phase functions created by simulating laser propagation through the atmosphere. 

We now present an example of the performance of the Goldstein algorithm. Figure 4(a) shows the 

wrapped phase arg[exp{jVs(*)i)}] of an incident beacon field simulated as described in Section 3. This 

function was input to the Goldstein algorithm, and the unwrapped output 0pp(i, j) is shown in Fig. 4(b), 

where the detected branch points are shown. Figure 4(b) is hard to interpret since the dynamic range of the 

unwrapped phase is much larger than the dynamic range of the wrapped phase. Hence, in Fig. 4(c) we show 

the rewrapped phase given by arg [exp{j^gp(j, j)}]. Detailed comparison of Fig. 4(a) and Fig. 4(c) shows 

that the Goldstein algorithm provides an exact phase unwrapping in this case to within an insignificant 

piston term. 

Real deformable mirrors have a finite number of degrees of freedom, and as a consequence (/>gp(i, j) can 

not in general be fit perfectly with a real deformable mirror. Here we modeled a deformable mirror with 

influence functions e^(xp) consisting of a collection of two dimensional linear spline functions, also referred 

to as two dimensional triangle functions, placed on a Cartesian grid with user selected spacing D, represented 

by [26] 

e*(xp) = A(^^)l (20) 
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(b) 
Re-wrapped BP Phase 

Figure 4: Example of branch point reconstruction by the Goldstein algorithm for a laser beam propagation 
problem: (a) the wrapped incident phase tpi; (b) the unwrapped phase ^/output by the Goldstein algorithm 
with positive and negative branch points indicated by (+) and (o), respectively; and (c) the rewrapped phase 
given by arg[exp{j<f>i(i, j)}]. 
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where x* is the center location of the /r" actuator projected into pupil space. It should be noted that 

the bases of linear splines defined this way are 2D wide, so that with the arrangement used here the line 

segments defining where one influence function goes to zero fall directly under the peaks of the adjoining 

influcence functions. These actuators were fit to ^>gp(i, j) using a three step process [3]: 

1. The reconstructed phase, (j>Qp(i,j) is projected onto the actuators using 

_ T,ijW(i,j)(l)BP(i,j)ek(i,j) 

EuM»,J)|2 Pk ~  ^ ■_   /.-    -M2 ' (21) 

where Pk is the projection of (f>j$p(i,j) onto the Ar*1 actuator, and W(i, j) is a pupil function defined 

to be unity inside the pupil, and zero outside the pupil. This calculation is of necessity performed at 

the resolution of the simulation since the values of </>Bp(i, j) only exist on the sample grid. The entries 

of pk can be arranged into a vector we denote by p. 

2. Since the influence functions are not orthogonal the influence function interaction matrix R must be 

computed with elements given by [3] 

rH = J dxPW(xp)e/b(xp)e,(xp). (22) 

In our implementation Eq. (22) is computed with high accuracy using numerical quadrature to provide 

for a stable inverse of R. The weight vector c, containing the values of Cfc for the influence functions, 

is then computed from 

c = R-ip. (23) 

3. Finally, the deformable mirror phase fit to (j>ßp(i, j) is reconstructed using 

where the superscript DM is used to represent the phase of the deformable mirror applied to the 
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outgoing beam. 

The basic principle of the idealized least squares wave front reconstruction is straightforward. We assume 

that the pointwise wave front sensor has as its output a vector of x and ^/-directed phase differences denoted 

by A</>. Representing the vectorized input phase on a sampled grid using the notation <fr, we can define the 

relationship 

A$ = P0, (25) 

where P is a matrix containing l's, -l's, and O's, and is ordered so that the correct combinations of the 

elements of <j> are used to compute each element of Acf> [16, 14]. The least squares estimate of <f> is given by 

^LMSE = (PTP)_1PT^. (26) 

and the elements of the vector 4>1MSiE are rearranged into an array denoted by '/'LMSE^)^)- ^he deformable 

mirror is then fit to ^LMSE^'-?) using the process described in Eqs. (21) to (24) to obtain the deformable 

mirror figure associated with the idealized least squares reconstruction ^fyic-wihj)- In principle, least 

squares phase reconstruction based on Eq. (26) is quite simple, but in practice sparse matrix techniques may 

be required to implement Eq. (26). When phase differences computed from a continuous input phase are 

used in this algorithm in the absence of noise the output phase «^LMSE(*'•?) matches the input phase to 

within an insignificant piston term [16]. 

Due to the use of pointwise phase difference data the deformable mirror phase </>5p (i, j) and «^filj/fop {h j) 

are idealizations that can not be obtained experimentally. Rather, Hartmann sensor, or other wave front 

sensor data is generally used to obtain deformable mirror commands using a least squares fitting criterion. 

A Hartmann sensor consists of an array of lenslets placed one focal length in front of a camera, as shown in 

Fig. 5 [3]. Light falling on an individual lenslet is focused to a spot in the focal plane which is in general 

is displaced from the optical axis of the lenslet due to turbulence effects. The centroid of the intensity 

distribution of the light in the detector plane can be calculated for each lenslet, and the local slope of the 
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wave front can be calculated using 

s = k^- (27) 
Ii 

where xc is the two dimensional centroid location, and /; is the focal length of the lenslet. The least squares 

criterion minimizes the sum square of the error between the measured slopes, and the slopes which would arise 

from a linear combination of actuator influence functions. This minimization is accomplished by defining 

the error 

A = s-Hc (28) 

where s is a vector containing the measured slopes from all of the subaperture, c is a vector containing all of 

the deformable mirror weights, and H is a Jacobian matrix with the entry in the m row and (f column 

given by 

Minimizing the squared error defined by ATA yields the least squares set of actuator commands [3] 

cLSH=(HTH)~1HTs. (30) 

The least squares estimate for the deformable mirror figure is obtained by substituting the values of cLS into 

Eq. (24) to obtain deformable mirror figure obtained from the Hartmann sensor data (j>foTr(i,j)- 

The new algorithm is an extension of the algorithm presented in Ref. [21], where it was shown that 

the entire Hartmann sensor image and a conventional image could be jointly processed to increase the 

dynamic range of the Hartmann sensor. This algorithm uses a parameterized form for the deformable mirror 

figure given by Eq. (24), but with a different approach to calculating the weights c^. We seek to estimate 

c from measurements of the wave front sensor image intensity Iwi^-w), where x^ is a two dimensional 

coordinate in the Hartmann sensor image plane, the pupil plane intensity Ip(xp), and the conventional 

image plane intensity /c(xc)> where xc is a two dimensional coordinate in the conventional image plane. 

The optimization is accomplished by forming an objective function J(c), and minimizing J(c) by the choice 
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Figure 5: Diagram of the Hartmann wave front sensor. 

of c. The objective function used here is given by 

J(c) = J2 \(Iw(xw))1/2 - (/w(xW)c))1/2|   + £ [(/c(xc))1/2 - (/c(xc,c))1/2 (31) 

where Iw(x\v,c) and Ic(x-c,c) represent the wave front sensor and conventional images computed from the 

current guess of the vector c, respectively. The objective function in Eq. (31) is an extension of one of the 

objective functions used in phase retrieval [27]. Also, the availability of the beacon field intensity information 

/ß(xp) provides a significant extension to the approach used in [21] due to the fact that [iß(xp)]1'2 = 

\UB(X-P)\ can be used in computing Iw(x-w,c) and Ic(xi,c) as described below. The objective function 

in Eq. (31) can be minimized using quasi-Newton methods [28, 29], either with or without the use of an 

analytic gradient vector V J, with fcin element given by 

V*J = 
dj(c) 

dck 
(32) 

If no analytic gradient is used, then it is necessary to perturb each parameter ck at each step to evaluate 
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both V J and the Hessian matrix H of J(a) with (k, Z)tn element given by 

Hki = 
d2J(c) 
dckdci 

(33) 

This perturbation-based approach to estimating V J and H is computationally expensive. Hence, an analytic 

gradient V J was calculated. The details of this analysis are described in [21], and we present only the results 

of the analysis here. Note that the objective function in Eq. (31) has two terms which are summed: one 

due solely to the wave front sensor image, and one due solely to the conventional image, and we let these 

two contributions to the objective function be represented by Jiv(c) for the wave front sensor channel, and 

Jc(c) for the conventional image channel. The gradients of these two terms are given by 

dJwjc) 
dck 

=   23 I ^2 Mxp)efc(xp) exp < j ^ ckek(xp) 

(T     (        \   \ ^/^ 
W KW      \        Ü^(XH/)c)/lw(xp,Xiy) 

äVV    Iw{xw,c)J 
(34) 

and 

dJc(c) 
dck 

29 I ^2 P(XP)ek(x) exP \ J ^2 °k^k (x) 

Efrr^)1 t/c(xc,c)Mxp,xc) 
^ \Ic(xi,c)J 

(35) 

where xp represents a pupil plane coordinate, xc represents a conventional image plane coordinate, and 

S.W represents a Hartmann sensor image plane coordinate. In Eq. (34) the term i«-(xp) is the complex 

transmittance of a Hartmann sensor lenslet array with square lenslets of side length d and focal length fi 

iff(xp) = H exp I J Vi 
|xP-xc(s)| 1 > rect I 

xp -xc(s) 
(36) 

where kw = 2TT/\, A is the mean wavelength of the light, S is the number of subapertures, and xc(s) is 
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. The 

the center of the s* subaperture, the term hwi'X-p^w) is the propagation kernel for propagation from the 

back of the lenslet array to the lenslet focal plane, Ü^(xw,c) is the conjugate of the field estimate in the 

wave front sensor detector plane associated with the current state of c, and Iw (xjy, c) = Uw {%w > c) 

propagation from the back of the Hartmann sensor lenslet array to its detector plane is implemented with 

an angular spectrum propagator [21, 24], and the field propagated is given by \UB{XP)\ exp{^2k Ckek(i,j)}, 

incorporating information about the amplitude fluctuations of the beacon field into the algorithm. In Eq. (35) 

the term P(xp) represents the physical extent of the pupil, UQ(XC,C) is the conjugate of the conventional 

2 

image field estimate associated with the current state of c, Ic(xi,c) = Uc(xc,c) , and hc(xp,xp) is the 

propagation kernel from the pupil plane to the conventional image plane, and the amplitude of the field 

propagated is given by \UB(XP)\- The propagation from the pupil to the conventional image plane can be 

accomplished computationally using Fourier transform techniques [21, 24]. 

The weights obtained from the optimization process are used in Eq. (24) to form the deformable mirror 

figure associated with the nonlinear optimization algorithm denoted by «/»ST^J, j) In the next section we 

describe a simulation for propagating a point source beacon field through a turbulent region to a receiving 

aperture, applying the desired correction to the outgoing beam, and propagating the fields resulting from 

the three phase correction paradigms used here from the aperture back through the turbulence and on to 

the beacon plane, where turbulence compensation results can be compared. 

3    Simulation description 

The algorithm developed here is not linear, and further, we wish to evaluate its performance for saturated 

scintillation situations. Hence, a simulation was used to evaluate the performance of the new algorithm. The 

simulation follows the basic conceptual form shown in Fig. 3. The field due to a point source beacon was 

calculated in the plane of the first phase screen a distance 10 km away from the beacon [24]. The beacon field 

was propagated through the phase screen using Eq. (15). At each step the field which was passed through 

the phase screen was propagated 10 km to the next phase screen using an angular spectrum propagator 
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[21, 24, 7], and the process was repeated until the final screen was encountered in the aperture of the system. 

A total of 10 random phase screens were used to simulate the 100 km optical path. All of the phase screens 

and propagations were conducted in 256 x 256 arrays with 1 cm sample spacing. As discussed in Ref. [7], 

the relationship between the number of points along one edge the fast Fourier transform (FFT) array JV, 

the sample spacing Ax, the wavelength A, and the propagation distance z is 

- (Ax)2 

For the case used here with A = 987 nm, z = 10 km, and Ax = 1 cm, using Eq. (37) yields JV > 197.4, so 

that working with JV = 256 - sized arrays is satisfactory. 

Because a point source beacon emanates waves in all directions it is necessary in a simulation to strongly 

attenuate rays which are well outside the solid angle subtended from the aperture to the beacon [19]. Atten- 

uating these rays prevents "wrap-around error" which would arise in an FFT-based propagation simulation 

if these rays were allowed to propagate unattenuated. Our strategy for attenuating these rays is derived 

from Ref. [19]. Over a region which is 1.5 times the diameter of the circles described by the intersection of 

the solid angle subtended from the aperture to the beacon and the planes containing the phase screens the 

beam is allowed to propagate unattenuated. Outside this region a Gaussian rolloff is used to attenuate the 

field with e_1 width of 25 samples. For the propagation from the aperture to the beacon plane the field is 

converging, and as a result it is not necessary to attenuate the field in this manner. 

The phase screens were generated using a white noise filtering approach [19, 20, 30, 31]. Phase screens 

possessing the von Karman spectrum with outer scale Lo = 100 m were simulated using this method so that 

ensemble of phase screens has the power spectrum 

0.00969ft,C; 

(/3 + 11/Lo]2)1"* 

where / is a spatial frequency with units of inverse meters, and zi = 10 km is the layer thickness.   The 
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strength of each screen is controlled by adjusting C\. The phase screens were created in 2N x 2N arrays, 

and the center N x N section was extracted to avoid problems arising from the fact that autocorrelation 

of the phase is an even function [31]. While this approach to phase screen generation has been widely used 

[19, 20, 30, 31, 32], this approach is known to produce phase screens which are affected by truncation of 

the power spectrum at both high spatial frequencies, due to finite sample spacing Aa;, and at low spatial 

frequencies, due to finite array size N. We adopt this phase screen generation technique here because of its 

speed of operation, and because of reasonable agreement between theory and simulation [19]. 

The beacon field intercepted by the aperture was passed through a simulated lens with complex trans- 

mittance given by Eq. (16). The intensity of the beacon field IB(*P) is noted, and used to compute the 

amplitude of the beacon field \UB(*P)\, which is used as the field amplitude in computed propagations to the 

Hartmann sensor and conventional image planes conducted in the nonlinear optimization-based algorithm. 

A conventional image Ic(x.c) and a Hartmann sensor image Iw(x\v) are computed for each beacon field, 

and this information is also provided to the nonlinear optimization-based algorithm to compute (j>^¥{i,j)- 

A conventional Hartmann sensor centroid-based least squares wave front reconstructor [3] was implemented 

on the wave front sensor image to obtain </>Lgjj(i, j), and a simulated outgoing laser beam initially carrying 

the resulting phase was propagated to the beacon plane and evaluated to provide one comparative perfor- 

mance measure for the new algorithm. Point-wise principal value phase differences were also computed for 

the beacon field using Eqs. (17) and (18), which are input to the branch point phase reconstructor to obtain 

</>Bp(i, j) and the ideal least squares reconstructor to obtain 0TjvlgIi;(«, j)- A deformable mirror was fit to 

4>Bp(hJ) an(i ^LMSE (*>•?) *° obtain <j>Ep (i, j) and <pPyra^(i,j), and these phases were applied to the out- 

going beam to obtain the branch point and ideal least squares reconstruction results. It should be noted that 

these pointwise phase differences are an idealization of a real wave front sensor, and would not be available 

in practice. Hence, these results represent an upper bound on performance that could not be obtained. We 

provide these results to obtain another comparative measure of performance for the new algorithm. 

The outcomes of the four phase correction schemes were associated with an initially planar wave in the 

aperture to create an outgoing field which was propagated to the beacon plane and evaluated for comparison 
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to the performance of the new algorithm. The outgoing fields were propagated back through the simulated 

lens and the phase screens, in reverse order, to the beacon plane. In the beacon plane statistical quantities 

which are used to compute the mean intensities for all of the correction approaches studied. In the absence 

of turbulence, the intensity pattern in the beacon plane would be an Airy disk [24], but with turbulence 

and the various correction schemes the actual beacon plane patterns are suboptimal. Statistical quantities 

required to compute the average far field intensity and the average Strehl ratio were accumulated, where the 

appropriate definition of Strehl ratio SR for this case is 

Actual on-axis intensity .    . 
IJ-R 

= ■^ :—: : r~; ; • l"9) 
On-axis intensity with no atmosphere 

We also computed the radial average of the intensity patterns in the beacon plane.   We now detail the 

physical parameters used in the simulation. 

A 0.5 m diameter receive/transmit aperture was modeled, and the wavelength of operation was set at 987 

nm. Deformable mirror actuators were placed on a Cartesian grid with spacing of 8 cm in the plane of the 

receive/transmit aperture, providing for a total of 37 actuators. Deformable mirror influence functions were 

implemented as described in Eq. (20). When equal weights are applied to all actuators in this configuration 

a planar deformable mirror figure results. The wave front sensor had 8 subapertures across its diameter for a 

total of 35 fully illuminated subapertures within the pupil. This arrangement of actuators and subapertures 

provides a stable solution to Eq. (30). When projected into the pupil plane the subapertures had side length 

equal to 6 cm, though they were actually modeled as having physical side length of 90 fim and focal length 

of 3 mm. The sample spacing in the wave front sensor lenslet and detector planes was 15 /xm, satisfying the 

sampling criterion for the wave front sensor lenslet array [21] 

Axw < ^p (40) 

where Axw is the sample spacing in the wave front sensor plane since Axw = 15/im < 21.9/im. The image 
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plane for each subaperture occupied a 7 x 7 sample region behind each lenslet. A Monte Carlo simulation 

approach was used, with 50 statistically independent propagations used to obtain the results presented. 

The simulation can be evaluated by comparing the theoretical Rytov variance a^R calculated using 

Eq. (13) to the variance of the log amplitude fluctuations CT£ at the aperture calculated from a set of 100 

simulated propagations through the turbulent volume. This plot is shown in Fig. 6, where the a^R and the 

simulated <r£ are plotted as a function of C\ for the path. Inspection of Fig. 6 shows that the simulation 

consistently provides slightly stronger values of <r£ than are be predicted by Eq. (13) when a?. R < 0.3, and 

the a^ provided in the simulation saturates, as expected [17, 19], at CT£ RS 0.35. The fact that simulated a2
x 

is larger than a.2 R for low values of cr^R most likely arises from the attenuation of the rays implemented to 

avoid wrap-around error discussed above, and the limitations of the phase screen generator, also discussed 

above. 

4    Theoretical and simulation results. 

Results of this study are presented in Figs. 7 and 8. Figure 7 shows radial averages of the far field intensity 

patterns for the C\ = 3 x 10-17 case, where the peak intensity has been normalized to the intensity obtained 

by the branch point reconstruction technique. In this case the Rytov variance is 0.47, and saturated log 

amplitude fluctuations were obtained in the simulation. Inspection of Fig. 7 shows that the branch point 

reconstructor performed significantly better than the least squares reconstructor, a consistent result for all 

cases where saturated log amplitude fluctuations arose. 

Figure 8 shows SR vs. C„ and SR vs. the Rytov variance for all of the simulation runs conducted. 

Inspection of Fig. 8 shows that for low values of Rytov variance, or equivalently, low values of C2, the branch 

point and least squares recontructors perform comparably. However, in the region where the log amplitude 

fluctuations are saturated, a2 > 0.35, branch point reconstruction has a significant advantage in Strehl ratio 

over least squares reconstruction. These results demonstrate the importance of branch point reconstruction 

for adaptive optical laser beam propagation through the atmosphere for optical paths that cause saturated 
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Figure 6: Theoretical Rytov variance, and simulated a^ as a function of C\. 

log amplitude fluctuations. Further, these results show that fitting errors between the deformable mirror 

and the discontinuous branch point reconstructed phase do not dominate the errors in the outgoing beam. 

The main results of this paper are presented in Figs. 9 and 10. The input C\ values, the associated 

Rytov variances cr£ R, and the average number of objective function evaluations required convergence Nj 

are listed in Table 1. In the legends of both these figures "BP" refers results obtained for 4>Bp{i,j), "LS" 

refers to results obtained for c6£JK(i,j), "WFS" refers to results obtained with (j>^H{i,j), and "NL OPT" 

refers to results obtained with (/>^(i,j). Results for the curves labeled BP and LS are unobtainable in 

practice because they require that pointwise phase differences be available, and these curves are provided for 

purposes of comparison. The curves labeled WFS and NL OPT are, in principle, obtainable in practice since 

they can be computed from intensity information available in an adaptive optical system. The branch point 
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Figure 7: Radial averaged far field intensity patterns for the case C\ = 3 x 10" 17 

reconstruction results represent the upper bound on performance for the nonlinear optimization technique, 

and the idealized least squares curves represent an upper bound on the performance of the Hartmann sensor- 

based least squares reconstruction technique. 

Figure 9 shows the average Strehl ratio results for the four correction techniques investigated. For 

7 x 10~18 < C\ < 1 x 10~17 scintillation is weak, and using conventional Hartmann sensor processing 

provides better Strehl ratio performance than the nonlinear optimization technique. However, as o\^ 

increases, the nonlinear optimization technique begins to outperform the conventional Hartmann sensor 

processing approach. The onset of saturated scintillation occurs in the vicinity of C\ = 2 x 10~17 for the 

geometry studied here. In the regime C£ > 2 x 10~17 the nonlinear optimization technique provides Strehl 
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Table 1: Listing of C\, O^R, and Nj for the plots shown in Figs.   9 and 10. 

c'i 0 
<* Nj 

7 x io~ls 0.11 44.5 
1 x 10~17 0.16 49.9 
2 x 10~17 0.32 53.6 
3 x 10-17 0.47 57.5 
4 x HT17 0.63 56.8 
5 x 10-17 0.79 58.5 
6 x 10-17 0.95 53.6 
7 x 10~17 1.10 57.0 
8 x 10~17 1.26 53.1 
9 x HT17 1.42 51.5 
1 x HT16 1.58 50.1 

ratios which are a factor of 1.5 to 4 larger than those provided by conventional Hartmann sensor processing. 

The radially averaged intensity patterns shown in Fig. 10 were computed by averaging the beacon plane 

intensity for the projected beam, and then averaging this result over circles of constant radius. These plots 

indicate that the nonlinear optimization approach provided results superior to the conventional Hartmann 

sensor-based approach for all cases of saturated scintillation in both on-axis intensity, and by providing 

narrower beam width. In fact, the nonlinear optimization technique for wave front control yields results 

which approach those provided by the idealized branch point reconstruction technique. 
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Strehl Ratio vs. C2 for Various Correction Schemes 
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Figure 9: Strehl ratio results for the various correction schemes. In the legend "BP" refers results obtained 
for 4>^(i,j), "LS" refers to results obtained for </)^{i,j), "WFS" refers to results obtained with <j)^H(i,j), 
and "NL OPT" refers to results obtained with (p^{i,j). 
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Figure 10: Example radially averaged beacon plane intensities for the projected beam: (a) C\ = 2 x 10 17, 
a\ = 0.316; (b) C\ = 4 x 10~17, a\ = 0.631; and (c) C% = 7 x 10"17, a\ = 1.104. In the legend "BP" 
refers results obtained for <t>ßp{i,j), "LS" refers to results obtained for ^fj^i, j), "WFS" refers to results 
obtained with <l>^H(i,j), and "NL OPT" refers to results obtained with (/>%%(i,j). 
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5    Experiment and experimental results. 

An experiment has been set up and designed to verify the ability to control the amplitude of the transmitted 

wave front field falling on the DM2 in the two-deformable-mirror concept. In the experiment, a collimated 

laser beam illuminates a deformable mirror which was controlled electronically. A wave front sensor (WFS) 

measurement of the wave front field reflected from the deformable mirror is taken by a digital camera. The 

WFS measurement is used to obtain the phase of the reflected wave front field. A Fourier-transforming 

lens is used to obtain the Fraunhofer diffraction or far field intensity of the reflected wave front field. The 

Fraunhofer diffraction pattern of the reflected wave front field is the amplitude of the transmitted wave 

front field falling on DM2 in the two-deformable-mirror concept. The far field intensity of the reflected 

wave front field is measured by a digital camera. The far field intensity pattern is compared with the 

theoretical far field pattern. The theoretical far field intensity pattern is obtained by taking the Fourier 

transform of exp{jipi(x)}, where ipi{x) represents the reconstructed phase from the WFS measurement. 

In the experiment, a good match was obtained between the measured intensity pattern and the intensity 

pattern predicted from the Hartmann sensor measurement. 

The nonlinear response and strong coupling of control channels in the deformable mirror make the 

deformable mirror used here difficult to drive to a desired surface shape [33, 34]. Each actuator produces 

an electrostatic force to push or pull the mirror surface to form a particular mirror surface shape, and each 

actuator modulates the whole surface of the mirror. Therefore, no linear relationship between the control 

signals and the exact deformation of the mirror exists. 

The deformable mirror used in the experiment is the micromachined membrane deformable mirror 

(MMDM) from OKO technologies [34, 35]. MMDM consists of silicon chip mounted over a PCB holder. 

The chip contains silicon nitride membrane, which is coated with aluminum to form the mirror. The PCB 

contains the control electrode structure, spacer, and connector. The design of the assembled mirror is shown 

in Fig 11. The MMDM consists of 37 actuators which drive the deformable mirror surface. A layout of the 

MMDM actuators is shown in Fig. 12. The shape of the reflective membrane is controlled by applying volt- 
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ages between the membrane and the control electrodes. These control voltages are supplied by 8 bit digital 

boards installed in a computer and two identical high-voltage DC amplifier boards. The output voltages 

of the digital board are in the range from 1 to 3.65 V. The range of the output voltage has been digitized 

between 0 and 255. Then, the output voltages are sent to two identical high-voltage amplifier boards. Each 

board contains 20 non-inverting DC amplifiers. Each amplifier has a gain 59, providing the output voltage 

swing of 1 to 213 V. The amplified output voltages are sent to MMDM and drive the deformable mirror 

surface. 

The nonlinear response and strong coupling of control channels in the deformable mirror make this 

deformable mirror difficult to drive to a desired surface shape [33, 34]. Each actuator will produce an 

electrostatic force to push or pull the mirror surface. The force produce by each actuator is defined as: 

f=«-<y, ««I 

where ee0 is the dielectric constant of the material between the electrodes (air), S is the area of the electrode, 

d is the distance between the electrodes, Vj, is the bias voltage and Vc is the control voltage. Each actuator 

modulates the whole surface of the mirror. The overall mirror surface deformation has a nonlinear response. 

The strong coupling of control channel is presented because the actuators are close to each other, and due 

to the mechanical properties of the surface material. Therefore, we were unable to estimate the relationship 

between the control signals and the exact deformation of the mirror. The control signals can be found from 

the wave front phase by the least squares phase reconstruction technique [3]. 

An influence function and the corresponding WFS image are shown in Fig. 13. The influence function 

is obtained by applying voltage level 255 to actuator 2 and 64 to other actuators. During the phase recon- 

struction, only center 980x980 pixels are used from the WFS image. Also, the influence function 1, 19 and 

37 are shown in Fig. 14. A calibration phase is obtained by replacing the deformable mirror with the flat 

mirror. This calibration phase is the deterministic phase error caused by the deterministic tilt in the wave 

front field, and is subtracted from each reconstructed phase. The calibration phase and the corresponding 
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Table 2: Focal lengths of lenses used in the experiment setup. 

Lens label Focal length (mm) 

Lo 400 
Li 175 

LpT 500 
LTL 75.6 

Table 3: Nominal distances used in the experiment setup. 

Element Separation Distance (mm) 
Iris to Center of Beam Splitter I 145 

Center of Beam Splitter I to Center of Beam Splitter II 207 
Center of Beam Splitter II to Deformable Mirror 220 

Center of Beam Splitter II to L0 173 
L0 to Li 608 

Li to Hartmann Lenslet Array 193 
Hartmann Lenslet Array to Hamamatsu Digital Camera 26 

Center of Beam Splitter I to LFT 97 
LFT to Turning Mirror 330 
Turning Mirror to LTL 320 

LTL to Cohu Digital Camera 310 

WFS image are shown in Fig. 15. 

In order to apply the phase deformation to DM\ and DM2, a set of actuator commands are sent to the 

DM\ and DM2. The actuator commands can be obtained by using the least squares phase reconstruction 

technique [3, pages 177-197]. The i influence function is obtained by applying the voltage level 255 to the 

i^"- actuator and 64 to other actuators. 

An experiment was designed to verify the ability to control the amplitude of the wave front field falling on 

the DM2 in the two-deformable-mirror concept. The block diagram of the experimental setup for controlling 

the amplitude falling on the DM2 is shown in Fig. 16. Lens focal lengths and nominal positioning dimensions 

in the experiment setup are summarized in Table  2 and  3. 

A 17 mW He-Ne laser beam with A=632.8 nm was used as a light source. The laser beam passed through 

the neutral-density filter. The neutral-density filter is used to reduce the intensity of the laser beam. The 

laser beam after the neutral-density filter passed through a beam expander.   The purpose of the beam 
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expander is to generate an expanded and collimated laser beam. Then, the expanded and collimated laser 

beam passed through an iris to reduce the diameter of the laser beam to 15 mm. The laser beam after 

the iris illuminated on the Beam Splitter I. The Beam Splitter I directed the laser beam to Beam Splitter 

II. The Beam Splitter II directed the laser beam to the deformable mirror. A wave front field is reflected 

from the deformable mirror. The deformable mirror is the micromachined membrane deformable mirror 

(MMDM) from OKO Technologies [35]. The reflected wave front field is reflected back to Beam Splitter 

II. Beam Splitter II sends half of the wave front toward the afocal telescope and half of the wave front to 

Beam Splitter I. The afocal telescope is formed by two convex lens. The purpose of the afocal telescope 

is to reduce the diameter of the beam from 15mm to 6.56mm. The mathematical expression for the beam 

diameter reduction caused by an afocal telescope is represented as follow: 

d2=[j)d1, (42) 

where d2 is the diameter of the wave front field after the afocal telescope, d\ is the diameter of the wave front 

field before the afocal telescope, /i is the focal length of the lens L0 and f2 is the focal length of the lens L*. 

In the experiment, d2 is 6.56 mm, di is 15 mm, /i is 400 mm and f2 is 175 mm. The compacted wave front 

field is passed to the lenslet array. The lenslet array segments the wave front field and focusses the light on 

the detector plane of the Hamamatsu digital camera. Each lenslet of the lenslet array has focal length = 24 

mm and side length = 328 /zm. Hence, there were 20 subapertures across the beam diameter. The model 

number of the Hamamatsu digital camera is C4742-95. The detector plane of the Hamamatsu digital camera 

consists of a 1024x1024 pixel array, and the rectangular pixels have dimensions of 6.7 /mix6.7 [im. A WFS 

image is taken by the Hamamatsu digital camera. The WFS image is processed by the phase reconstruction 

software to reconstruct the wave front phase. The theoretical far field intensity can be computed by the 

following expression 

Ith = |Fr[expÜVi(*)}]|2 (43) 

where FT[-] is the Fourier transform operator and tpi(x) is the reconstructed phase. 
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The dynamic range of Fourier spectrum predicted by Eq. (43) is higher than the dynamic range of the 

detector in the Cohu digital camera [36, pages 92-93]. Hence, only the brightest part of the far field intensity 

which computed from Eq. (43) is visible. In order to see the far field intensity in detail, the theoretical far 

field intensity can be computed by the mathematical function [36], 

hx = log(/tfc + 10000) (44) 

The logarithm function is used to reduce the dynamic range of the far field intensity. 

The other half of the wave front field from Beam Splitter II passed through Beam Splitter I and fell 

on the lens LFT with /=500 mm. This lens is the Fourier-transforming lens in the two-deformable-mirror 

concept. The wave front field after the lens was passed toward the turning mirror. The reason for using the 

turning mirror is to create more space on the optical bench. The wave front field reflected from the turning 

mirror is propagated through two neutral-density filters to avoid saturation the detector. A positive lens 

LTL with /=75.6 mm is used to magnify the far field image. The ratio of the magnification is 3:1. The thin 

lens law is used to achieve the magnification. From the thin lens law, 

M = -^-, (45) 
So 

and 

Si       S0        J 

where "—" sign indicate the image is inverted, M is the magnification, Si is the image distance, s0 is the object 

distance and / is the focal length of the lens which used in the magnification system. In the experiment, / 

is 75.6mm. The s, and s0 cannot be measured exactly from the experiment because the plane of the lens 

cannot be located. A variable neutral-density filter wheel is placed in front of the Cohu digital camera to 

control exposure on the detector plane of the Cohu digital camera, which had a fixed integration time of 33 

ms. The model number of the Cohu digital camera is 4110. The image plane has 480x752 pixels, and the 
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rectangular pixels have dimensions of 8.66 /mix 9.92 /xm. 

The location of focus of both digital cameras can be found by counting the number of pixels between the 

first zeros of the point spread functions with the deformable mirror replaced by a flat mirror. The deformable 

mirror is not used for alignment because deformable mirror surface is not flat. The deformable mirror has 

initial deviation from plane of less than 0.6 /xm [35]. In the case of finding the location of focus of Cohu 

digital camera, the diameter of the laser beam was reduced to 8mm from 15 mm to broaden the Airy disk, 

making it easier to find focus. The width between the first zeros of the point-spread functions on the Cohu 

digital camera can be calculated by the following expression: 

., ,       2.44M/A 
width = —^— (47) 

where M is the magnification of the image, / is the focal length of the Fourier-transforming mirror, A is the 

wavelength of the laser beam and D is the diameter of the laser beam. In the experiment, M=3, /=500 mm, 

A=632.8 nm and D=& mm. Therefore, the width between the first zeros of the point-spread functions on 

the Cohu digital camera is 289.51 jum. The number of pixels which span the x-axis slice of the point spread 

function on the detector plane is thus 33 pixels. From the experiment, we found that the number of pixels in 

the x-axis slice of the point spread function is 34 pixels. The picture and the z-axis slice of the point spread 

function are shown in Fig. 17 and Fig. 18. Finally, the far field intensity is measured and displayed on the 

Cohu digital camera. 

In order to test the performance of the experiment, different sets of micromachined membrane deformable 

mirror actuator voltage signals are applied to drive the mirror to different surface shapes. In a particular set 

of mirror actuator voltage signals, a WFS image on the Hamamatsu digital camera and a far field intensity 

on the Cohu digital camera are measured. The phase of the wave front field reflected from the deformable 

mirror is reconstructed from the wave front sensor measurement. The measured far field intensity pattern 

can be compared with the theoretical intensity far field pattern. In order to compare the measured far field 

intensity pattern and the theoretical far field intensity pattern, same spacing in both image are required. 
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The measured far field intensity pattern has been interpolated by using the bicubic interpolation to have 

same spacing with the theoretical far field intensity pattern. Both far field intensity patterns have 256x256 

pixel array, and the rectangular pixels have dimensions of 48.04 /imx48.04 pm. 

The experiment results shown in Fig. 20 are obtained by applying the maximum voltage (in digitized 

levels) of 255 to actuators one and two, and constant voltage 64 on the other actuators. Figure 20(a) show 

the reconstructed phase, Fig. 20(b) shows the theoretical far field intensity pattern, and Fig. 20(c) shows 

the measured far field intensity pattern on the Cohu digital camera. 

The experiment results that shown in Fig. 21 is obtained by applying the maximum voltage of 255 (in 

digitized levels) to actuator 1, 19 and 37, and the constant voltage 64 to the other actuators. Fig. 21(a) 

shows the reconstructed phase, Fig. 21(b) shows the theoretical far field intensity pattern, and Fig. 21(c) 

shows the measured far field intensity pattern on the Cohu digital camera. 

From the experiment results above, the far field intensity pattern is successfully obtained. This far field 

intensity is the intensity of the transmitted wave front field falling on the DM2 in the two-deformable-mirror 

concept. The ringing effect present in all theoretical far field intensity patterns is due to the two-dimensional 

triangle function which were used as elementary functions in phase reconstruction. 

6    Conclusions 

In this program the problem of correcting for atmospheric turbulence-induced scintillation errors in laser 

beam projection and imaging through the atmosphere has been addressed. The approach taken was the 

implementation and study of a phase and amplitude correction technique which uses two deformable mir- 

rors, and then extend these results to look at a novel algorithm for controlling a single deformable mirror. 

This work has been successful in that it has been demonstrated that the possibility of compensating for 

turbulence-induced scintillation exists for both the laser beam projection and imaging applications. Studies 

of the implications of using real adaptive optical system hardware to implement the two deformable mirror 

technique have shown the limitations of this approach. However, the results obtained here for the nonlinear 
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optimization-based approach to controlling a single deformable mirror show a great deal of promise, and will 

be pursued in the future. 
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Figure 11: The schematic diagram of the micromachined membrane deformable mirror. 
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Figure 12: The actuator layout on the micromachined membrane deformable mirror. 
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WFS Image 
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Figure 13: (a) WFS image (b) The influence function; with applying voltage level 255 to actuator 2 and 64 
to other actuators of the deformable mirror. 
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Influence (unction 1th 

(b) 
Influence function 37th 

Figure 14: The influence functions are obtained by applying, maximum voltage 255 on actuator T , and 
constant voltage 64 on the other actuators: (a) The influence function 1. (b) The influence function 19. (c) 
The influence function 37. 
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WFS Image with the flat mirror 
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Figure 15: (a) WFS image (b) The calibration phase; with the deformable mirror replaced by flat mirror. 
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Figure 16: Block diagram of the experimental setup for controlling the amplitude falling on DM2- 
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100 200 300 400 500 600 700 

Figure 17: The point spread function with the flat mirror falling on the Cohu digital camera. 
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250 

Figure 18: The x-axis slice of point spread function with the flat mirror falling on the Cohu digital camera. 

51 



Figure 19: Photograph of the experiment setup. 
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Figure 20: The experiment results is obtained by applying the maximum voltage of 255 (in digitized levels) 
on actuators one and two, and the constant voltage of 64 on the other actuators: (a) Reconstructed phase; 
(b) theoretical far field intensity pattern; (c) measured far field intensity pattern 

53 



r 

(a) 
Far fWd Intensity pattern 

50 100 150 200 250 

(b) 
Maaaurod tar field Intensity pattwn 

(c) 

Figure 21: The experimental results obtained by applying, the maximum voltage of 255 (in digitized levels) 
to actuator 1, 19 and 37, and constant voltage 64 to the other actuators: (a) Reconstructed phase; (b) 
theoretical far field intensity pattern; (c) measured far field intensity pattern 
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